Work \& Power
Work is done when energy changes

A change in Ep or Bk
$\mathrm{W}=\Delta \mathrm{E}<=$ the work/ energy theorem
Units of work are joules
How much work is done in lifting a 4.0 kg cat carcass to height 2.0 m ?

$$
\begin{aligned}
w & =\angle E_{\rho}^{-} \\
& =E_{\rho}^{-}-E_{\rho}^{-} \\
& =m g h_{f}-m g h_{f}=4(9.8) 2-4(9.8) 0=78.4 \mathrm{~J}
\end{aligned}
$$

Some random non-physics loser kid of mass 60 kg rides their bike at $6.0 \mathrm{~m} / \mathrm{s}$ and accelerates To $10 \mathrm{~m} / \mathrm{s}$, how much work was done before they got hit by a bus?
0530) 3

$$
\begin{aligned}
& W=\Delta E_{k} \\
&=E_{k_{f}}-E_{k_{0}} \\
&=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{0}^{2}=\frac{1}{2}(60) 10^{2}-\frac{1}{2}(60) 6^{2} \\
&=3000-1080=1920 \mathrm{~J}
\end{aligned}
$$

A cat at rest with mass 5.0 kg is kicked and seen moving at $4.0 \mathrm{~m} / \mathrm{s}$ and height 3.0 m , What work was done on the cat?

$$
\begin{aligned}
& W=\Delta_{\tilde{E}_{k}}+\Delta E_{\rho}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
w & =E_{k f}-E_{t 0}+E_{p_{f}}-E_{p_{0}} \\
& =\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{0}^{2}+m_{i} g h_{f}-m g h_{f} \\
& =40-0+147-0=
\end{aligned} \\
& =40-0+147-0=187 \mathrm{~J} \\
& \text { Work is done when a force moves an object across a distance } \\
& \text { av }=F \text { - } \\
& \text { Force and distance MUST be parallel AND the force must stay constant } \\
& n=F \cdot d \\
& =86.6(20) \\
& =17.30 \mathrm{~J}
\end{aligned}
$$

$$
\text { (cos so) } 100
$$

Find the work done!

A cat is pushed 10 m along the floor using a force of 4.0 N , what work is done?

$$
4 \cap]^{60 J}
$$

A cat of mass 8.0 kg is accelerated from $5.0 \mathrm{~m} / \mathrm{s}$ according to the graph, find the final velocity
\qquad

$$
\frac{12}{4}=3
$$

POWER: Work done per unit of time <= how fast you work

Act of mass 10 kg at rest if kicked slowly until a speed of $6.0 \mathrm{~m} / \mathrm{s}$ is reached in 18 seconds, find the power needed to do this.

$$
\begin{aligned}
& \text { Finish } t \text { sheets or cis } \\
& \text { in your house }
\end{aligned}
$$

ENERGY: energy is the ability to change some conditions in the universe Units are Joules, same as work 2 main categories for energy

Gravitational $E p=m g \Delta h$

Elastic Ep $=1 / 2 \mathrm{kx}^{2}$

Energy stored in mass $E=m c^{2}$
$\mathrm{m}=$ mass in kilograms
$\mathrm{g}=$ gravitational field ($9.8 \mathrm{~m} / \mathrm{s}^{2}$ on Earth)
$\Delta h=$ change in height from low point
$\mathrm{V}=$ velocity in m / s
$\mathrm{K}=$ spring constant in N / m
$\mathrm{X}=$ extension or compression in meters
$\mathrm{C}=$ speed of light ($3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$)
$\Delta \mathrm{T}=$ change in temperature $\left({ }^{\circ} \mathrm{C}\right)$
energy in a moving mass $\mathrm{Ek}=1 / 2 \mathrm{mv}^{2}$

Heat energy in moving molecules $\mathrm{Eh}=\mathrm{mc} \Delta \mathrm{T}$

The WORK/ENERGY THEOREM states work done on an object changes its energy
$W=\Delta E$

Example 1: a spring with constant $25 \mathrm{~N} / \mathrm{m}$ is stretched from 15 cm to 20 cm , what Is the work done on the spring?

```
\(\mathrm{W}=\Delta \mathrm{E}\)
W = Epf - Epo
\(W=1 / 2 k x^{2}-0\)
\(W=1 / 2(25)(0.20-0.15)^{2}\)
\(\mathrm{W}=0.0313 \mathrm{~J}\)
```

Example 2: 90 J of work are done accelerating a 10 kg cat from $3.0 \mathrm{~m} / \mathrm{s}$, What is its final velocity?
$W=\Delta E$
W = Ekf - Eko
$W=1 / 2 m v_{f}{ }^{2}-1 / 2 m v_{o}{ }^{2}$
$90=1 / 2(10)\left(v_{f}^{2}\right)-1 / 2(10)\left(3^{2}\right)$
$90=5 v_{f}^{2}-45$
$135=5 v_{f}{ }^{2}$
$27=v_{f}^{2}$
$v_{f}=5.2 \mathrm{~m} / \mathrm{s}$

Do 1 - 4 page 222

8 -7 page 224

The work / energy theorem states that the work done on an object Is equal to the change in energy it receives!
A cat on fire has mass 3.0 kg is lifted from 2.0 m above a spike to 3.5 m above the sam

Thursday \leftarrow Lab

POWER <= the rate at which work is done

$$
P=W / t
$$

Power is measured in units of J / s which is the WATT.
For large amounts of power a larger unit

Known as horsepower was used,
1.0 horsepower (or 1.0 hp$)=750 \mathrm{~W}$

A 100W light bulb operates for 1.0 hour. How much work was done?

Greta pulls a wagon 10 m using a force of 300 N along the handle which is inclined at 60° to the horizontal for 20 seconds, what power does Greta produce?

