Vectors

Vectors are physical measurements that contain both a size and direction. Size is called magnitude.
$18 \mathrm{Nat} 43^{\circ} \mathrm{W}$ from N
Direction is measured along compass bearings referring to major directions like
North, East, South, West (out of the page, into the page)
List of Vectors:
Displacement
Velocity
Acceleration*
Force
Momentum
Gravitational field
Electric field
Current
Magnetic field
Magnetic Flux

Things which are not vectors are called SCALARS. These have size (magnitude) only.

Scalars:
Time
mass
Distance

Acceleration*
Work
Power
Energy
Voltage/potential/electrical potential/potential difference/EMF
Resistance
ResULTANT \leftarrow result of adding vectors
$<6.0 \frac{\mathrm{~m}}{\mathrm{~s}}$

$$
6 \text { Draw vectors Tip to tail }
$$ E Resultant goes from start to finch θ between 1" vector 1 cosiltact adding

$$
\begin{aligned}
& T_{\tan }^{-1}\left(\frac{0}{8 i}\right)=v \\
&=37^{\circ} \\
& N \text { from } E
\end{aligned}
$$

Restart

Find the resultant of: $12 \mathrm{~m} / \mathrm{s}[\mathrm{E}]$ and $5 \mathrm{~m} / \mathrm{s}[\mathrm{S}$]

$e_{\cdot}=\tan \theta$

$$
\begin{gathered}
\Theta=\operatorname{Tan}^{-1}\left(\frac{5}{12}\right)=23^{\circ} \\
67^{\circ} \text { E from }
\end{gathered}
$$

$$
\begin{aligned}
& \mid=\tan \theta \\
& =23^{\circ}
\end{aligned}
$$

from
$13.2 \mathrm{~N}[\mathrm{~W}]{ }_{7.2}^{8.0 \mathrm{~N}}[\mathrm{~N}]$

Vector Components (parts) used to add vectors that are neither parallel, nor perpendicular

$$
\begin{aligned}
& =14.1 \\
& \text { find } X_{\text {total }}=\left|\overrightarrow{14.1}+12.9 \quad f_{\text {ind }} y_{\text {TOTAL }}=14.1 \downarrow+7.5^{\circ}\right| \\
& =\overrightarrow{27} \quad=6.6 \mathrm{l} \\
& \text { Draw Tip to tail } \\
& \text { 1. Find } x \text { and } y \text { components of each vector } \\
& \text { 2. Find an } X \text { total and a } Y \text { total } \\
& \text { 3. Draw the } X \text { total tip to tail with the } Y \text { total } \\
& \text { 4. Use Pythagoras to find the magnitude } \\
& \text { 5. Use } \tan ^{-1} \text { to find direction } \\
& \begin{array}{l}
-1\left(\frac{6}{13}\right) \\
\operatorname{ain}^{-1} N \text { front }
\end{array} \\
& x_{\text {TOTAL }}=\overleftarrow{12}+\overrightarrow{15}=\overrightarrow{3} \\
& y_{\text {TOT }}=16 \uparrow+25.5 \uparrow=41.59
\end{aligned}
$$

4.

One component goes in the Y -direction (one component goes in the Z -direction)
totals

i) Find x and y components of each vector
ii) Find an X total and a Y total
iii) Draw the X total tip to tail with the Y total
iv) Use Pythagoras to find the magnitude
v) Use $\tan ^{-1}$ to find direction

Find the sum of 40 N at 450 S of E and 50 N at 60 o N of E

Method 3 Sine Law/Cosine Law vector addition:

