Never Jibtract a vector, instead add the opposite vector.

$$
\begin{aligned}
& x_{\text {Tot }}=\overrightarrow{10}+\overrightarrow{6}=\overrightarrow{16} \\
& y_{\text {tor }}=24 \uparrow+8 \uparrow=32 \uparrow
\end{aligned}
$$

A plane needs ground speed $150 \mathrm{~m} / \mathrm{s}$ at $30^{\circ} \mathrm{S}$ from W Wind speed is known to be $40 \mathrm{~m} / \mathrm{s}[\mathrm{S}]$ find the airspeed needed.

$$
\begin{aligned}
& X_{\text {TOTAL }}=\overleftarrow{130} \\
& X_{\text {TOT }}=75 \downarrow+40 \uparrow=35 \downarrow
\end{aligned}
$$

$\Delta V \leftarrow a l w a y s$ vector subtraction

A car is traveling at $25 \mathrm{~m} / \mathrm{s}$ at $45^{\circ} \mathrm{N}$ from E LATER it is seen going due south at $10 \mathrm{~m} / \mathrm{s}$ find the change in velocity!!!!!

$$
\begin{aligned}
& \Delta V=V_{f}-V_{0} \\
&=l^{\Delta} \quad \\
& 10 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

$$
x_{T 01}=\overleftarrow{7_{.6}}
$$

$$
y_{T O T}=10 \downarrow+17.6 b
$$

$$
=27.6 \downarrow
$$

$$
\tan ^{-1}\left(\frac{27.6}{17.6}\right)=\theta
$$

57° from W

Vector Navigation

$$
14,3,4,5,6,9,10,12
$$

