Vectors are physical measurements that have direction as part of them. South
Velocity (speed with direction) is a vector,
displacement (distance with a direction) is a vector.
Acceleration is a vector if any directional info is given.
Forces (any push or pull) are vectors, momentum is a vector, impulse is a vector, gravitational field is a vector. Current is a vector.

Vectors are symbolized with arrows

In text books vectors are often written in bold font
Vectors have $\underline{2}$ parts to them: magnitude (size with units) they also have a direction

Example: a cat travels at $30 \mathrm{~m} / \mathrm{s}$ east. Magnitude of the velocity $=30 \mathrm{~m} / \mathrm{s}$
Draw it
Compass bearings:

ω

Adding vectors is done by drawing them in TIP TO TAIL fashion. The tip of one vector touches the tail of the next vector.

The result of adding vectors is given a name, it is called the RESULTANT. Resultant show up on diagrams. THEY ARF NOT tip-to-tail. Resultants are draw h from the starting point to the end point.

Find the resultant of $\underbrace{8.0 \mathrm{~m} / \mathrm{s}[\mathrm{E}]}$ a $6.0 \mathrm{~m} / \mathrm{s}[\mathrm{E}]$

Find the resultant of $8.0 \mathrm{~m} / \mathrm{s}[\mathrm{W}]$ a $6.0 \mathrm{~m} / \mathrm{s}[\mathrm{S}]$. You must drawthisthagoras

$$
\begin{aligned}
\operatorname{Tan}^{-1}\left(\frac{6}{8}\right) & =37^{\circ} \\
& =\text { from WJ }
\end{aligned}
$$

Direction is an angle at some $\mathrm{N} / \mathrm{E} / \mathrm{S} / \mathrm{W}$ from ${ }^{5} \mathrm{~N} / \mathrm{E} / \mathrm{S} / \mathrm{W}$
The angle is ALWAYS between your first vector and your resultant

Find the resulting displacement of a cat carcass which is dragged by a wolverine 100 m [N] then hit by a bus and smeared 60 m [W].

$$
\frac{o p \rho}{\alpha d_{j}}=\tan \theta
$$

$$
\begin{gathered}
\frac{60}{100}=\tan \theta \\
\tan ^{-1}\left(\frac{60}{100}\right)=W^{3} \cdot \mathrm{ficm}^{\circ} N
\end{gathered}
$$

A cat is pulled by a force 50 N [E] at the same time it is pushed by force of 40 N [S] and punted with a force 20 N [W] Find the resultant.

$\operatorname{Tom} \theta=\frac{40}{30}$
$\begin{aligned} \theta=T_{\text {am }}^{-1}\left(\frac{40}{30}\right) & =53^{\circ} \\ S & \text { from } E\end{aligned}$

$$
\theta=\mathrm{cm}^{-1}\left(\frac{40}{30}\right)
$$

$$
3 \text { - n ip to tail }
$$

Vectors may be added in any order, so add the parallel vectors together first!

Boys: find the resultant of $12 \mathrm{~m} / \mathrm{s}[\mathrm{W}]$ and $5.0 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$.

