Type 2 Projectiles

The only difference between a type 1 and a type 2 projectile is that a type 2 is launched on an angle over level ground

The big challenge is to break the initial velocity into X and Y parts and remember which part to use!

Finding the time in the air remains the same using $d_{y}=v_{\text {or }} t+1 / 2 a_{y} t^{2}$

Note: $d_{y}=0$ at the end of the parabola!
Then use that time to find the range.

$$
d_{,}=V_{0, ~}^{0}+t_{2}^{1} a a^{2}
$$

$$
\begin{aligned}
& y=6 t+i-9.8) t^{2} \\
& 0=6+-4.9 t^{2}
\end{aligned}
$$ $4.9 t^{x}=66$

$$
t=\frac{6}{4.9}=1.22
$$

(1) Find components
V_{0}
$\left\{\begin{array}{l}\text { (2) Find } t \text { using } \\ a_{y}=V_{0 y} t+\frac{1}{2} a_{y} t^{2}\end{array}\right.$
(3) find
range

Find the cat's range
A cat is kicked ft $30 \mathrm{~m} / \mathrm{s}$ ot an angle of 60° to the horizontal, find the range

1.22
 Vector
ito moments

$$
a_{x}=0
$$

$=160^{\circ} \mathrm{m}$

What is its height at the high point?
$\partial_{y}=? \quad V_{f y}=0$

$$
\begin{aligned}
& 4.9 t^{*}=41 \% \\
& t=\frac{11}{4.9}=8.37 \mathrm{~s}
\end{aligned}
$$

j) 1.5 . $50 \mathrm{om}^{4}$
(as da3.bc.ca

$$
\begin{aligned}
& V_{o y}=140.8 \xi_{3}^{17} \quad a_{y}=-9.8 \frac{\xi^{2}}{5} \\
& V_{f y}^{2}=V_{0 y}^{2}+\partial \partial_{y} \\
& \text { When does the golf ball hit it's highest point? } \\
& 0_{0}^{0}=40.8^{2}+2(-9.8) d_{y} \\
& 795 d_{y}=\frac{1665}{19.6}=85 \mathrm{~m}
\end{aligned}
$$

What is the Y-velocity at the high point?
What

What is the velocity at the high point?
Vax

At the λ infin anoint the final velocity = Vow

At the Niff point the final velocity = Vow

1) A cat is kicked on level ground with a velocity of $12 \mathrm{~m} / \mathrm{s}$ at an angle of 50° to the horizon, what is its "hang time", range, \& max height?

Hang time: 1.88 s
Range: 14.5 m
Max height: 4.31 m
A cat was kicked, right in the face, and soared skyward at $30 \mathrm{~m} / \mathrm{s}$ on an angle of 50° from the horizontal. Find its range and max height.

$$
\begin{aligned}
& \text { vey } t^{*}=\frac{23 x}{4.9} \\
& t=4.7 \mathrm{~s} \\
& 30^{\pi}=19.3 \\
& \partial_{x}=\text { ? } \\
& t=4.7 \\
& v_{0 x}=19.3 \\
& a_{x}=0 \\
& d_{n}=V_{0}+\frac{2}{2} t^{2} . \\
& U_{f y}=0 \\
& V_{0 y}=23 \\
& a_{y}=-9.8 \quad V_{f y}{ }^{2}=U_{0 y}{ }^{2}+2 a_{y} d y \\
& \partial_{y}=\text { ? } \\
& -{ }^{i} \text { ax } \frac{1}{2} \text {. } \\
& \begin{aligned}
0^{2} & =23^{2}+2(-4.8) d y \\
0 & =529-19 y^{2} y
\end{aligned} \\
& 0=529-19.6 d y \\
& 19.8 d_{y}=\frac{529}{19.6}=d_{y}=27 \mathrm{~m} \\
& \partial_{y}=27 \mathrm{~m}
\end{aligned}
$$

