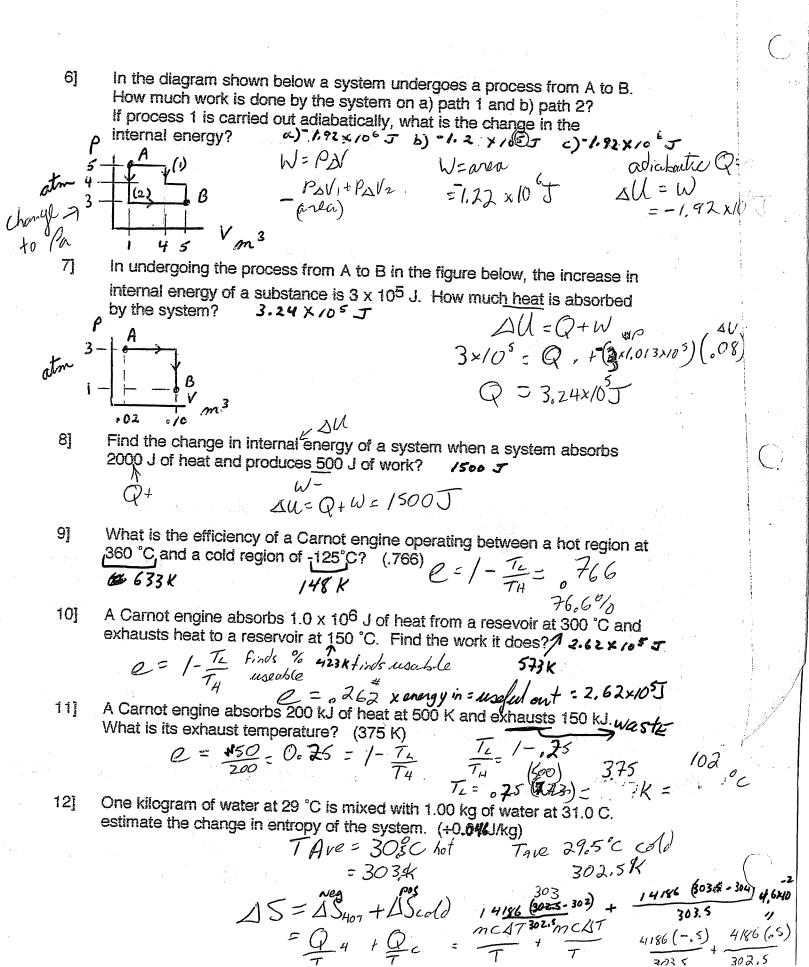
W= WitUztW

First Law Review

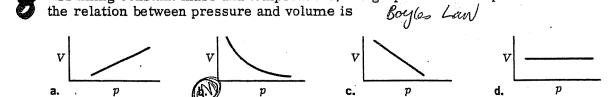
- The ideal gas in a tank originally has $V = 16.0 \text{ cm}^3$, P = 100 kPa, and 11 T = 40.0 °C. It is now compressed isothermally to 8.00 cm³. What is the P,V,=P2V2 1600= 200kPa (200kPa) new pressure? 17=0 DU=0
- a) from A to B W = PAV (reg due)
 b) from B to C W = PAV (reg due)
 c) from C to A O A series of processes that an ideal gas system has undergone is shown 2] below. Find the work done by the system in going

 - d) entire cycle e) What is the internal energy change in going around the entire cycle?
 - -2.4J a) -2.40 J b) 1.35 J c) 0 J d) -1.05 e) 0 J Same point :: Same T: AU=0

A gas expands by 1.2 L at a constant pressure of 2.5 x 10⁵ Pa. During the 3] expansion 500 J of heat is added. Find the change in internal energy all=Q+W of the gas. (200 J)

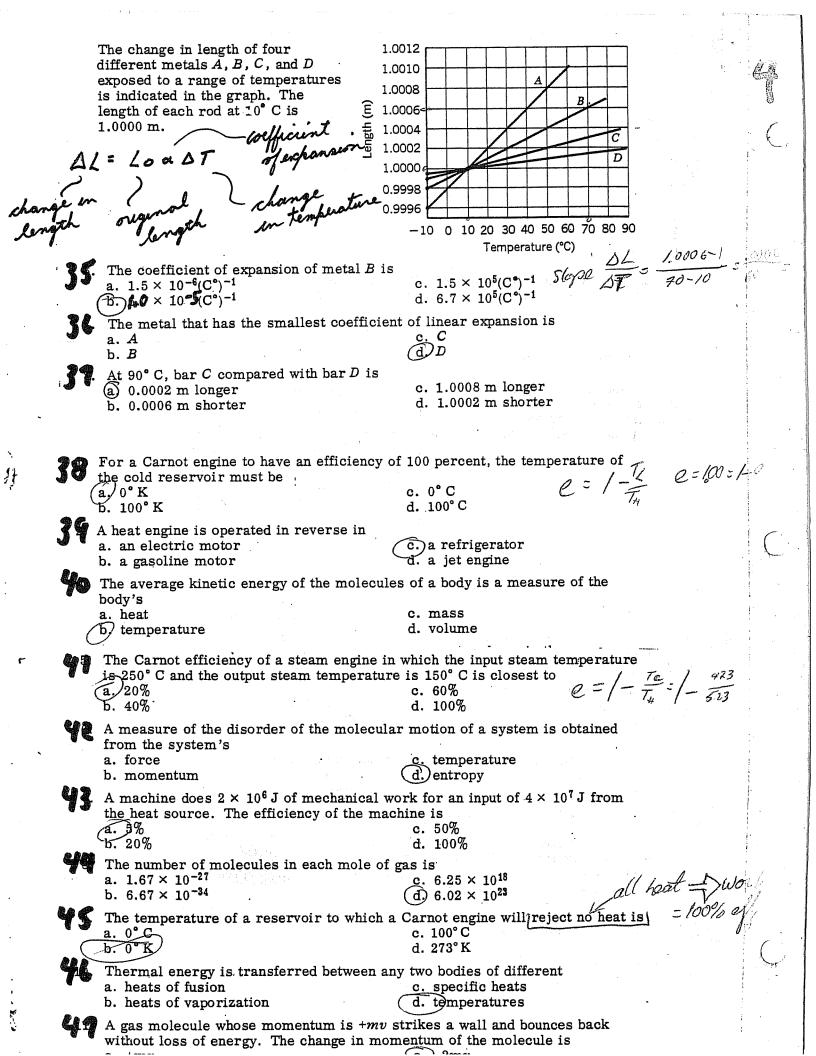

500-PSV = 500-300 = 200J

- Draw a P-V graph showing a isobaric, isothermal, and adiabatic expansion. 4]
 - a) Which expansion represents the greatest work? \(\frac{50BARIC}{}{} b) How does the temperature vary during each expansion? (see teacher)
- adichatic soberic Isothern


 PV=nRT AT=0

 AT = 0 (defn.) 4Q=0 DU=-W if system expands Meverse if compre ion-higher than kothe
 - #2 For the reversible process shown above, the temperature of the ideal gas at 5] A is 327°C, What is the temperature at B and C? (777 °C, -198°C) at B $\frac{8 \times 10^5}{5633 \times 10^{-3}} = 1050 - 273 = 777^{\circ}$ Change to K = 600k

PV=nRT at A $(8\times10^5)(4\times10^6) = k(600)$ $k = 5.33\times10^{-3}$ C \$1 x10 5 4x10 - 75 -273= -198 1


4.	Compared with a mole of titanium (atomi atoms in a mole of carbon (atomic mass	c mass = 48), the number of	H:/
	a. one fourth as great	c. twice as great	<u> </u>
• (the same	d. four times as great	
Stu	dy the information below; then complete statem	nents 2 144 4	
	The graph represents the relation	© 1.2	
	between temperature and pressure	1 1 G	
	for 10 g of oxygen gas.	ag 1.0	
		Hessare (atmospheres) 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	-
7		· to 0.6	
A		일 0.4	_
	1 June	g 0.2	
Section of the second		20.0 73 123 273 373 473	
		-200 -100 0 +100 +200 +	300
	•	Gay-Lussac Temperature (°C)	
120.	The pressure of the oxygen gas varies		
	a) directly as the temperature	c. inversely as the temperature	
`	b. directly as the square of the	d. inversely as the square of the	a
_	temperature	temperature	
瑁.	At 273° K, the pressure of the gas is clos	sest to	
	a0.5 atm	c. 1.0 atm	
_	5. 0.9 atm	d. 1.5 atm	
	For the relation shown in the graph, the	volume of the gas must be	
T,	a. continually increasing	c.) constant	
,	b. continually decreasing	d. increasing then decreasing	
Sele	ect the term that best completes each of the follow	owing statements.	
	The universal management Base 1		
3	The universal gas constant R may be obtained and R may be o	allied from the pressure P, tem-	
	a. $R = PVT/n$	C R = PV/nT	
	b. $R = PTn/V$	$\begin{array}{c} (\overline{C}.) R = PV/n\overline{T} \\ d. R = PT/nV \end{array}$	
	If 2 moles of gas confined in a 10 m ³ tank	, 400	
	a pressure of $1.5 \times 10^{\circ}$ N/m, the number	of moles of this same was needed to	
	maintain the same pressure in a 50 m ³ ta		¬ n T
*	a. 0.25	c. 1.2 1 200K P.V.	(r), (r)
	b. 0.8	ank at -73° C is $\begin{array}{c} \text{c. } 1.2 \\ \text{d. } 20 \end{array}$	na Rotz
T.	The values for a gas at standard conditio	ns are	Der n X
	$a \cdot P_0 = 1 \text{ atm}; n_0 = 1 \text{ mole};$	c. $P_0 = 0$ atm; $n_0 = 2$ moles; P_0	1= 17, K/1 = 12/1)
	$T_0 = 273^{\circ} \text{ K}; V_0 = 22.4 \text{ liters}$	$T_0 = 273^{\circ} \text{ K}; V_0 = 10 \text{ liters}$	11. V.
	b. $P_0 = 1$ atm; $n_0 = 1$ mole; $T_0 = 0$ K; $V_0 = 1$ liter	d. $P_0 = 0$ atm; $n_0 = 2$ moles;	100 n ×20
	-0 - 0 12; v ₀ = 1 liter	ns are c. $P_0 = 0$ atm; $n_0 = 2$ moles; $T_0 = 273^{\circ}$ K; $V_0 = 10$ liters d. $P_0 = 0$ atm; $n_0 = 2$ moles; $T_0 = 0^{\circ}$ C; $V_0 = 1$ liter	2×400 = -
			10 50
A A	ssuming constant mass and temperature,	the graph that best represents	

As the mass of the gas in a given container is doubled, the number of $E_k = \frac{1}{2}mv^2 = \frac{3}{2}kT$ impacts per second on the walls of the container a. is halved b. remains the same is $I = \frac{1}{2}mv^2 = \frac{3}{2}kT$ which also double mass which also doubles $I = \frac{3}{2}kT$

Study the paragraph below; then complete statements 1220 - 2 A 5.0 g ice cube at 0°C is dropped into 10 g of water at 30°C. The final temperature of the mixture is 0° C. The amount of heat given up by the water in reaching the final temperature is a. 50 cal = 10(1) 30 (c.)300 cal b. 150 cal d. 400 cal The number of calories required to melt the first gram of ice is c. 30 b. 10 d. 80 As the ice melts at 0°C, the potential energy of its molecules 🍇 increases c. remains the same b. decreases d. increases, then decreases

	Unlike convection and conduction, as molecular motion b. variations in density	c. electromagnetic waves d. the flow of air	1
1	•	is concerned with the conservation of c. charge d. matter	
	If 1.00 g of steam at 100° C loses to a. 20° C	se at 0° C, the number of calories of heat c. 800 d. 5400 Security C. 99° C - C -	539 to C
9	b. 10 Ten kilograms of silver (specific)	heat = 0.056) at 80° C are placed in an insu-)2/°C
	lated container with 10 kg of water no losses to the container or surrelable between 80° C and 70° C b. 70° C	re (specific heat = 1.00) at 60° C. Assuming coundings, the final temperature will be between 70° C and 60° C d. less than 60° C	
Stud	ly the information below; then complete	te statements 2 3 0 0 0 0 0 0 0 0 0 0	-60)
	The graph shows the addition of heat at a rate of 10 cal/min to a 10 g mass of substance A and a 10 g mass of substance B .	70 Gas / Gas	-600
The second secon	Same mass greath	E 30 E50 00 B	٠.
Maryor of the state of the stat	some mass greath met time for A greater energy required incress	0 2 4 6 8 10 12 14 16 18 20 22 Time (min)	
8	The heat of fusion of A, compared a. half as great b. the same	d with that of B , is constant C twice as great C three times as great	
29.	The specific heat of A in the liquit a. half as great $Some Slope (ACC)$ the same	id state, compared with that of B, is the of hear c. twice as great of Differently three times as great	
30	The specific heat of B in the solid a. 0.63 cal/g·C° 1.20 cal/g·C°		:=60 cq
3	Losses of mechanical energy du a thermal energy b. electrical energy	ue to friction become gains in c. nuclear energy d. gravitational energy	
3	In the metal ring at the right, the ference, outer circumference, a labeled 1, 2, and 3 respectively that will increase if the ring is a. 1 and 2 only b. 1 and 3 only	and height are v. The dimensions 1	
3	The maximum density of pure wa40° C b. 0° C	water occurs at © 4° C d. 32° C	
3	Among the following, the poores a. iron b. silver	st conductor of heat is c. copper d glass	

	hoat energy decaying
	into on uncartierable
	heat energy decaying into on uncapturable from uncapturable
According to the second law of thermodyna the	amics, the term entropy describes (state
a) unavailability of energy b. availability of heat	c. minimum available energyd. maximum available heat
Absolute temperature is proportional to a. average kinetic energy per molecule by average potential energy per	d. kinetic energy per cubic centimeter d. potential energy per
molecule A mass Nm of gas is placed in a cylinder The average speed v of the molecules of g	
relation a. $v = \sqrt{Nm/3PV}$ b. $v = \sqrt{3PV/Nm}$ Nk = \sqrt{R} An engine whose maximum efficiency is 50 source whose temperature is 1000° K. The a. 50° K	c. $v = \sqrt{Nm/3P}$ d. $v = \sqrt{PV/3Nm}$ $v = \sqrt{\frac{PV}{3Nm}}$ percent gains its energy from a stemperature of the cold reservoir is $v = \sqrt{\frac{PV}{Nm}}$
a. 50° K b. 100° K $650 = 1$ 1000 $7.5 = \frac{1}{1000}$ Study the information below; then complete stateme	d. 1000°K
A source at a temperature of 1500° K puts heat into the engine in the diagram. The engine puts out 5.0 × 10 ⁴ J of work for a heat input from the source of 1.0 × 10 ⁵ J. The temperature of the cold reservoir is 500° K. Actual 5 40 - 50	1550 K Useful work 1-5 500° K 0-67
The actual efficiency of the engine is a. 15% b. 20%	c. 59% d. 100%
The Carnot efficiency of the engine is a. 20% b. 50%	6. 67% d. 100% Q, -Q ₂ - W
The useful work W of the engine is determined by $W = Q_1 - Q_2$ b. $W = Q_1 + Q_2$	mined from the relation c. $W = Q_2 - Q_1$ d. $W = Q_1 \times Q_2$
A temperature of 30° on the Celsius scale on the Kelvin scale of a. 243° b. 273°	e is the same as a temperature (c) 303° (d. 373°
If the pressure of 10 g of an ideal gas at this gas at absolute zero is a. 0 atm b. 0.5 atm	50° C is 1 atm, the pressure of c. 1 atm d. 2 atm $ \frac{P_1}{7} = \frac{P_2}{T_2} $ $ Ox /= 323 P_2 $