Projectiles combine the kinematic formulas with vectors.
A projectile is any object launched into the air regardless of direction or initial velocity.
It accelerates downward at $-9.8 \mathrm{~m} / \mathrm{s}^{2}$ due to gravity.
Note that object dropped and objects fired HORIZONTALLY from the same height strike the ground at the same time.

$$
\text { "I I promise } \text { no mix } X_{s}^{\prime} y^{\prime}
$$

The motion in the Y -direction is independent of the motion in the X -direction.
Both directions follow the kinematic equations (most commonly used is $d=v_{o} t+1 / 2$ at 2)
DO NOT MIX THE X AND Y VALUES!
Type I projectiles: always shot horizontally, always raised some height off a lower surface
use t

A cat is shot horizontally off a 30 m high bridge at $12 \mathrm{~m} / \mathrm{s}$, how long does it take to hit the railroad below?

A cat on fire runs $2.0 \mathrm{~m} / \mathrm{s}$ off a cliff that is unknown height if rock extend from the base 3.0 m outward will the cat clear the rocks making a perfect dive into the lake or suffer a debilitating neck injury while burning?

A bomber aircraft flying at height 200 m above the deck of a cruise ship full of cats is moving horizontally at $45 \mathrm{~m} / \mathrm{s}$. If it drops "food" to the disabled ship how far in front of the ship must the plane release the "supplies"?

$a_{x}=0 t$
The only time you can use the X-direction to find time t is when you are given both d_{x} and v_{ox}. Then you're usually asked to find the height of the projectile...

Vex
A cat is thrown horizontally at $4.0 \mathrm{~m} / \mathrm{s}$ off a building into a flaming barrel which is 18.0 m from the base of the building, how high was the building?

the building, how high was the building?

