Navigation Vectors

These are situations where vectors are used in river crossing and airplane navigation.

River Crossing Problems:
Keep in mind: skiver currents never get you to the other side
Only the vector whose component is aimed at the far side of the river gets you to the far side.

Equation for getting across: $\Delta \mathrm{d} / \Delta \mathrm{t}=$ Wave
REMEMBER: USE DISPLACEMENTS THAT ARE PARALLEL TO VELOCITIES
 $\begin{aligned} & \text { it reacher the far side if the currut is } \\ & \frac{\Delta t}{\Delta t} \Delta v=x \\ & \text { (b) } 8 t \\ & 80\end{aligned}=480 \mathrm{~m}$
find the resultant $\stackrel{5}{5}$ What velocity is seen from. Shore

$$
\begin{aligned}
8^{2}+6^{2}=c^{2} & \operatorname{Tan} \theta=\frac{6}{8} \quad{ }^{0} W g S \\
c=10 \frac{0}{5} & \theta=\operatorname{Tan}^{-1}\left(\frac{6}{8}\right) \\
& =37 \text { EAton } N
\end{aligned}
$$

Determine the velocity as viewed from shore of a boat whose velocity in still water is $5.0 \mathrm{~m} / \mathrm{s}$ [S] as. it crosses a river with, cu rent $12.0 \mathrm{~m} / \mathrm{s}$ [W]. The river ic 40 m across.

$$
t=40 s
$$

$$
V_{c}=12 \frac{\mathrm{~m}}{3}
$$

$$
\begin{aligned}
& V_{b}=5 \frac{m}{s} \\
& \operatorname{Tam} \theta=\left(\frac{12}{5}\right)
\end{aligned}
$$

How long does it take the boat to reach the far side?

$$
\wedge \quad \frac{\Delta J}{i \rightarrow}=V
$$

How long does it take the boat to reach the far side?
when it reaches the far ba

How far downstream is the boat when it reaches the far bank?

$$
\begin{aligned}
\frac{\Delta d}{t} & =V \Delta t \\
& =12(20)=240 \mathrm{~m}[\mathrm{w}]
\end{aligned}
$$

A river flows north at $15 \mathrm{~m} / \mathrm{s}$, it is 75 m wide. A swimmer can s.vim at $7.5 \mathrm{~m} / \mathrm{s}$ 2. hd swims due east across the river, how far downstream is the swimmer when it reaches the far bank? What is the velocity as seen from shore?

Getting Straight Across:
To do this the boat (swimmer or duck) has to aim upstream and let the current push it into a straight resultant The resultant should be straight across the river

A ducky swims at $2.0 \mathrm{~m} / \mathrm{s}$ in still water what angle should the ducky aim to kine straight across a river if the current is $1.30 \mathrm{~m} / \mathrm{s}$ find resultant

$$
\sin ^{-1} 1.3
$$

$V p+V w=V g$
Velocity of plane + velocity of wind = velocity seen from ground
Airspeed + wind speed $=$ ground speed \curvearrowleft

The big challenge: rivers usually have Vc and Vb at $90^{\circ}, \mathrm{Vp}$ and Vw are almost never at 90°.
How do you add vectors that not 90° to each other?

1. COMPONENTS
\rightarrow 2. Xtotal Ytotal
2. Draw tip-to-tail, with resultant
L4. Pythag
(5. Tan $^{-1}$

A plane has airspeed $50 \mathrm{~m} / \mathrm{s}$ at $30^{\circ} \mathrm{N}$ of Ext encounters a wind of speed $25 \mathrm{~m} / \mathrm{s}$ at $15^{\circ} \mathrm{E}$ of S , what is the ground speed?

$$
\begin{aligned}
X_{T_{0 T}} & =4 \overrightarrow{3.3}+6 . \overrightarrow{2} \\
& =4 \overrightarrow{9.8}
\end{aligned}
$$

$$
y_{T 07}=25 \uparrow+24 \downarrow=\uparrow 1
$$

$$
\theta=\operatorname{Tan}_{\text {an }}^{-1}\left(\frac{1}{50}\right)=1^{0} N \text { from } 50
$$

$$
\theta=T_{\mathrm{am}}^{-1}\left(\frac{1}{50}\right)=1^{\circ} \mathrm{N} \text { frame }
$$

A Canada goose due west at $13 \mathrm{~m} / \mathrm{s}$ to faro beach so it can poop on it.

$$
\begin{aligned}
& \underbrace{\theta}_{2} 0 \theta=\pi_{a}^{-1}\left(\frac{q_{1}}{2}\right) \\
& \theta=84^{\circ} N \text { font }
\end{aligned}
$$

If the wind speed is known to be $20 \mathrm{~m} / \mathrm{s}$ at $30^{\circ} \mathrm{So}$. What must be the groundspeed of the goose?

$$
\begin{aligned}
& x_{0,1}=\overleftarrow{13}+\overleftarrow{17} \\
& =\leftrightarrows \\
& y_{-\sigma}=10 \downarrow \\
& 18^{\circ} S \text { from W } \quad T_{a m}^{-1}\left(\frac{10}{30}\right)
\end{aligned}
$$

