1	P	а	a	e	1
- 1		ч	•	•	

Ligh	nt & Optics	Name
		Block
Α.	Light as a wave in the electron	- 1
long low low	1) You should be able to arran spectrum according to wavel the chart on P 670 into you include numbers. Wawls Radio TV IR Am Fm Cell 750,	ge the electromagnetic ength and frequency. Copy Notes. You do not need to Continued from waves Visible X.Ray gamma high freq high to high to Roemen determines C is finite 2-6 E Michelson rotating mains exit light travels in strugter line (rays), we rays lead a point, we measure some
В.	Measuring the Speed of Light 2	2-6 = michelson rotating mirror ent
c.	The ray model of light 23-1/	light travels in strugth line of rugs,
D.	Index of refraction 23-4	a jev-
	1) What is the index of refraction do you calculate it? It was a speed of light of speed of light of speed of light. 2) Note the table or indicies is air or 1.0003 water 1.33	in a substance $S = \frac{C}{V_s}$ of refraction on P 696 What
E.	Refraction: Snell's Law 23-5	
	1) List Snell's law and descri (remember the soldiers) $\bigcap_i \text{ Sin } \bigcirc_i : \bigcap_r \text{ Sin } \Theta_r$	be it very carefully. $ \frac{Ai}{Ar} = \frac{\sin \theta_{r}}{\sin \theta_{i}} $
	A flashlight beam strikes the si $(n=1.50)$ at an angle of 45 deg. refraction? (28.1 deg)	urface of a pane of glass What is the angle of $S_{i,n} \Theta_{i} = n_{i} S_{i,n} \Theta_{r}$ $45 = 1.5 S_{i,n} \Theta_{r}$
	1 sin	·
		sin Orc o471
		Or = 28.1°

2]	A diver shines a flashlight upward	from beneath the water
_	at a 28 deg angle to the vertical.	. At what angle does
	the light leave the water? (38.6	deg) / (

1.33 Sin
$$28^{2}$$
 (sin 0 = 38.6° (.624)

What is the speed of light in a clear plastic whose index of refraction is 1.40? (2.14 x 108 m/s)

$$\frac{C}{V} : n = V = \frac{3 \times 10^8}{1.4} = 2.14 \times 10^8 = \frac{3 \times 10^8}{5}$$

A beam of light strikes the surface of a block of glass (n = 1.50) and produces a refracted angle of 10°. What is the incident angle? (15.1°)

Monochromatic light has a wavelength of
$$6.0 \times 10^{-7}$$
 m in air

Monochromatic light has a wavelength of $6.0 \times 10-7$ m in air and $5.0 \times 10-7$ m in a clear liquid. What is the index of refraction of the clear liquid? (1.2)

A ray of light strikes the surface of water (n = 1.33) at an angle of 60.0° from the water surface. What is the angle of refraction? (22.1°)

7] Light is incident on an equilateral crown glass prism at a 45.0 deg angle to one face Calculate the angle at which light emerges from the opposite face. n = 1.56 (58.2 deg to normal)

1.56 S.h. 3.3 = 1.99 sin Or Or = 346 58,2°

F.	Total	internal	reflection;	fiber	optics	23-6
T .	1000				0,0000	

1)	What is	total	internal	reflection?	What is	the crit
	angle?			10)	incida 1

all light mys reflected from surface

ical

8]

242 sin Oc = 1.33 sin 90 Oc= Sin (1.33) = 330

The critical angle for a certain liquid-air surface is 9] 57 deg. What is the index of reflaction of the liquid? (1.19)

n; six 57 = 1.0003 six 90 nr

n:=1.19

What is the critical angle for an air-glass interface if the index of refraction of glass is 1.50 (41.8°) 10]

Sin Oc = 1:635in 90 1 1i

in the diagram. Illustrate

ght and calculate the angle that

air interface. (59.8°)

1.5 s.in 35.2 = sin Θ_{a} = 659

1.33 Θ_{c} = 41.2°

becomes new Θ_{c} Θ_{c} = 5in Θ_{c} Θ_{c} = 5in Θ_{c} A ray of light travels from glass (n=1.5) into water 11] (n = 1.33) into air as shown in the diagram. Illustrate the path followed by the light and calculate the angle that the light leaves the water-air interface. (59.8°)

AIR m=1

H,0 M=1.33 GLASS m= 1.5

Р	rob	lem	s
			~

1] Light entering a block of glass at an angle of incidence of 18.5 degs leaves the boundary betweenthe air and the glass at an angle of 12 degs. What is the index of refration of this type of glass?

1.0003 sin 18.5 = nr = 1.53

2] A beam of light is incident on a sheet of glass in a window at an angle of 30 degs. Describe exactly what path the light beam will take as it a) enters the glass (n = 1.5) and as it b) leaves the other side of the glass.

1sin 30 = Sin Or

- Or= 1950 30 is reversed!
- 3] Calculate the critical angle for diamond (n = 2.42).

2.42 5/2003 sen 90 Di=24.40

- 4] A certain material has a critical angle of 52 degs. What is its index of refraction? assume w/air Ni 5:25 1.0003 sin 90 11: 1/27
- Why can the fisherman not see the specific light ray coming from the fish? Can 5] the fisherman see the fish at all?

ofish. Where should be as shown

- a) The fisherman wants to spear the fish. Where should he aim?
 - b) a "high tech" fisherman wants to "zap" the fish with a laser. Where should

she aim? - بنزشکیپرم

6]

deepers closer to shore

at the fish = laser light will repeat into H20

G.	Section 23-2 Reflection; Image Formation by a Plane Mirror
	What is the law of reflection? Disangle of reflection
Οξ	Illustrate the formation of a virtual image by a plane mirror. Label the image distance, object distance, virtual image. (Figure 23-7) Same point & banking Same point & banking Af mirror by haw of reflect into world of the mirror How do you distinguish between a virtual and a real image?
12]	Suppose that you want to take a photograph of yourself as you look at yourself as you look at your image in a flat mirror 2.5 m away. For what distance should
	the camera lens be focused? (5.0 m) $\frac{d_i = d_0}{d_0} = \frac{1}{2.5m} total distribution of Images of Substitute Nimes.$
н.	Section 23-3 Formation of Images of Spherical Mirrors Draw and describe convex and concave mirrors. Dassume Little curvature
<i>(</i> *	CONCAVE: CONCAVE: CONVEX CONVEX CONVEX CONVEX
	MIRROR MIRROR

Define focal point and focal length

Point thu which rups | to PA reflect

How does the focal length relate to the radius of curvature?

Draw 3 diagrams illustrating the three rays used to find the image produced by a concave mirror. Label them 1, 2, and 3. Rain(1) Rain(1)

3. Ray 2) parallel to
P.A. reflects thruf
Ray (2) thruf, reflects
11 to PA
Ray (3) thru C, reflects
on itself

Draw diagrams illustrating the image formation in the following situations.

Image

do=R

do=R

do=R

Profund

Image

Parallel lines

Rover meet

NO IMAGE

S

	List and describe the mirror equation.
irdicates ealimages	40
	Study example 23-3 and 23-5.
	Describe the image you get if the object is, within the focal point? (Fig 23-16). Illustrate as well. Wirtual
	in a covert smaller
	Study Example 23-6 and read Problem Solving (P695) carefully.
s & do lwaip	Summarize the sign conventions for concave and convex mirrors. Concave $\rightarrow f + Convex \rightarrow f - Mirror$ $di + er - Mirror$ $di - er + Mirror$ $hi - er + Mirror$

13]	
101	What is the radius of a concave reflecting surface that
	brings parallel light of a focus 22.4 cm in front of it?
	(44.8(m)
	<i>†</i>
	(1) (1) (1) (1) (1) (1) (1)
	f={C C=2f = 44.8cm
14]	You try to look at yourself in a silvered ball of diameter
7-4]	64 of the state of
	Is it real or virtual? Can you see yourself clearly? pretty small //
,	(-15.1 cm, virtual, 18 x smallerhard to see)
• /	1, 1 1 Convax tells us too
<i>'</i> /.	(-15.1 cm, virtual, 18 x smaller-hard to see) (on virtual (a convex tells us to shows virtual (a convex tells us to shows virtual) (a convex tells us to show sixty of the shows of the s
	d: 10 11 di 27
1	. 6/6 of a
7	1 - 1.62 di (1)
	1: 0.0
15]	A dentist wants a small mirror that, when 2.20 cm from a
	tooth, will produce a 5.5 x upright image. What kind of
	mirror much be used as a state of the state
. /	must be used and what must its radius of curvature
and was	be? (concave, converging {concave}, r=5.38 cm)
on the	1 / M -di +55=-01 di= -ldolcm
to got virtual	larger Victor III = 2.2
Jei Vii	and miller 1 10 1 1 100 C
larger is con	$\frac{1}{1} = \frac{1}{1} + \frac{1}{1} = \frac{1}{1} + \frac{1}{1} = \frac{1}$
	(di do -12.1 2.2 f = 100 cm) oca
with do	tooth, will produce a 5.5 x upright image. What kind of mirror must be used and what must its radius of curvature (be? (concave, converging {concave}, r=5.38 cm) \[\lambda \qua
16]	A luminous object 3.0 mm high is placed 20 cm from a convex 📞 🕜
	mirror of radius of curvature 20 cm a) Show by ray tracing fregative, that the image is virtual and estimate the image distance b) Show that to compute this (negative) image distance use a from Fg 23.2 it is negative.
	that the image is virtual and estimate the image distance
K	b) Show that to compute this (possitive) in the distance.
	b) show that to compute this (negative) image distance
	from the 43 of the transfer of
	from Eq 23-2, it is necessary to let the focal length be careful
	from Eq 23-2, it is necessary to let the focal length be carefully measure -10 cm. c) Compute the image size using Eg 23-3.
EX)	110m Eq 23-2, it is necessary to let the focal length be carefully measure (di =-6.67 cm, hi = 1.0 mm) lagram (di =-6.67 cm, hi = 1.0 mm)
	110m Eq 23-2, it is necessary to let the focal length be carefully measure (di =-6.67 cm, hi = 1.0 mm) lagram (di =-6.67 cm, hi = 1.0 mm)
	(di =-6.67 cm, hi = 1.0 mm)
	(di =-6.67 cm, hi = 1.0 mm)
OBS	(di =-6.67 cm, hi = 1.0 mm)
OBS	The second state of the focal length be carefully measure (di =-6.67 cm, hi = 1.0 mm) Well $f = \frac{1}{2}$ Well $f = \frac{1}{2}$ The second state of the focal length be carefully measure (di =-6.67 cm, hi = 1.0 mm) $f = \frac{1}{2}$ $f = -8.6$ $f =$
OBS	The second state of the focal length be carefully measure (di =-6.67 cm, hi = 1.0 mm) Well $f = \frac{1}{2}$ Well $f = \frac{1}{2}$ The second state of the focal length be carefully measure (di =-6.67 cm, hi = 1.0 mm) $f = \frac{1}{2}$ $f = -8.6$ $f =$
OBS	The second state of the focal length be carefully measure (di =-6.67 cm, hi = 1.0 mm) Well $f = \frac{1}{2}$ Well $f = \frac{1}{2}$ The second state of the focal length be carefully measure (di =-6.67 cm, hi = 1.0 mm) $f = \frac{1}{2}$ $f = -8.6$ $f =$
	The second state of the focal length be carefully measure (di =-6.67 cm, hi = 1.0 mm) Well $f = \frac{1}{2}$ Well $f = \frac{1}{2}$ The second state of the focal length be carefully measure (di =-6.67 cm, hi = 1.0 mm) $f = \frac{1}{2}$ $f = -8.6$ $f =$
OBS 17]	The Eq. 23-2, It is necessary to get the focal length be carefully measured in the image size using Eq. 23-3. (di =-6.67 cm, hi = 1.0 mm) (di =-6.67 cm, hi = 1.0 mm) (di = -6.67 cm,
	The Eq. 23-2, It is necessary to get the focal length be carefully measured in the image size using Eq. 23-3. (di =-6.67 cm, hi = 1.0 mm) (di =-6.67 cm, hi = 1.0 mm) (di = -6.67 cm,
	The Eq. 23-2, It is necessary to get the focal length be carefully measured in the image size using Eq. 23-3. (di =-6.67 cm, hi = 1.0 mm) (di =-6.67 cm, hi = 1.0 mm) (di = -6.67 cm,
	The Eq. 23-2, It is necessary to get the focal length be carefully measured in the image size using Eq. 23-3. (di =-6.67 cm, hi = 1.0 mm) (di =-6.67 cm, hi = 1.0 mm) (di = -6.67 cm,
	The Eq. 23-2, It is necessary to get the focal length be carefully measured in the image size using Eq. 23-3. (di =-6.67 cm, hi = 1.0 mm) (di =-6.67 cm, hi = 1.0 mm) (di = -6.67 cm,
	A 2.70 cm tall object is placed 32.0 cm from a spherical estimate of mirror. It produces a virtual image 3.80 cm high. a) What type of mirror is being used? b) What is the radius of curvature of the mirror?
17]	A 2.70 cm tall object is placed 32.0 cm from a spherical astmate and what type of mirror is being used? (concave, di is 45 cm behind mirror, 212 cm)
17]	A 2.70 cm tall object is placed 32.0 cm from a spherical astmate and what type of mirror is being used? (concave, di is 45 cm behind mirror, 212 cm)
17]	A 2.70 cm tall object is placed 32.0 cm from a spherical astmate and what type of mirror is being used? (concave, di is 45 cm behind mirror, 212 cm)
17]	A 2.70 cm tall object is placed 32.0 cm from a spherical estimate of mirror. It produces a virtual image 3.80 cm high. a) What type of mirror is being used? b) What is the radius of curvature of the mirror?
17]	A 2.70 cm tall object is placed 32.0 cm from a spherical astmate and what type of mirror is being used? (concave, di is 45 cm behind mirror, 212 cm)
17]	A 2.70 cm tall object is placed 32.0 cm from a spherical astmate and what type of mirror is being used? (concave, di is 45 cm behind mirror, 212 cm)
17]	A 2.70 cm tall object is placed 32.0 cm from a spherical astmate and what type of mirror is being used? (concave, di is 45 cm behind mirror, 212 cm)
17]	A 2.70 cm tall object is placed 32.0 cm from a spherical estimate of the mirror. It produces a virtual image 3.80 cm high. a) What type of mirror is being used? b) Where is the image located? c) What is the radius of curvature of the mirror? (concave, di is 45 cm behind mirror, 222 cm)
17]	A 2.70 cm tall object is placed 32.0 cm from a spherical estimate of the mirror. It produces a virtual image 3.80 cm high. a) What type of mirror is being used? b) Where is the image located? c) What is the radius of curvature of the mirror? (concave, di is 45 cm behind mirror, 222 cm)
17]	A 2.70 cm tall object is placed 32.0 cm from a spherical estimate of the mirror. It produces a virtual image 3.80 cm high. a) What type of mirror is being used? b) Where is the image located? c) What is the radius of curvature of the mirror? (concave, di is 45 cm behind mirror, 222 cm)
17]	A 2.70 cm tall object is placed 32.0 cm from a spherical estimate of the mirror. It produces a virtual image 3.80 cm high. a) What type of mirror is being used? b) Where is the image located? c) What is the radius of curvature of the mirror? (concave, di is 45 cm behind mirror, 222 cm)
17]	A 2.70 cm tall object is placed 32.0 cm from a spherical estimate of the mirror. It produces a virtual image 3.80 cm high. a) What type of mirror is being used? b) Where is the image located? c) What is the radius of curvature of the mirror? (concave, di is 45 cm behind mirror, 222 cm)
17]	A 2.70 cm tall object is placed 32.0 cm from a spherical estimate of the mirror. It produces a virtual image 3.80 cm high. a) What type of mirror is being used? b) Where is the image located? c) What is the radius of curvature of the mirror? (concave, di is 45 cm behind mirror, 222 cm)
17]	A 2.70 cm tall object is placed 32.0 cm from a spherical estimate of the mirror. It produces a virtual image 3.80 cm high. a) What type of mirror is being used? b) Where is the image located? c) What is the radius of curvature of the mirror? (concave, di is 45 cm behind mirror, 222 cm)
17]	A 2.70 cm tall object is placed 32.0 cm from a spherical estimate mirror. It produces a virtual image 3.80 cm high. a) What type of mirror is being used? b) Where is the image located? c) What is the radius of curvature of the mirror? (concave, di is 45 cm behind mirror, 212 cm)

181 The magnification of a convex mirror is 0.45 x for objects 3.0 m away. What is the focal length of this mirror? (-245 cm).45do=-di di=-1.35m f=f+f=-1.35 3 .45 = -di of for focal miles of the which rays of the refrection of the post Section 23-7 Thin Lenses; Ray Tracing I. Draw a double convex and double concave lens. Define and give the symbol for focal point, focal length, from focal plane, converging lens and diverging lens. Plane of points which parallel incident nays meet (but not llustrate and learn to draw the three rays that can be used to illustrate the image produced by lenses. Label

Ray (1) Paralle /
*CONVERGING F Them CONVERGING F

Ray (2) thru divaging f

Paralle / to PA (Fig 23-34, 23-36) 08J OBJ Dist and describe the lens equation.

In point form -- list the sign conventions.

Same as before

List and describe a formula to find lateral magnification. What does a negative magnification mean?

Same a before

** Study Sec 23-9 $^{\text{V}}$ and Examples 23-11, 23-12, 23-13 ---- very carefully **

Describe and illustrate the image (inverted or upright? larger or smaller?, real or virtual?) produced by:

19] A sharp image is located 58.0 mm behind a 50.0 mm-focal length converginglens. Calculate the object distance.
(363 mm)

20] A leaf is placed 88.0 cm in front of a -710-mm-focal-length lens. Where is the image? Is it real or virtual?

(393 mm in front, virtual)

$$\frac{1}{4} - \frac{1}{4} = \frac{1}{6} = \frac{1}{710} - \frac{1}{88} = \frac{1}{92}$$

Page 10 21] A certain lens focuses an object 33.5 cm away as an image 5.0 cm on the other side of the lens. What type of lens is it and what is its focal length? Is the image real or virtual? (-4.3 cm, real) 1 + 1 = 1 13.5 15 f c 4.35cm a) An object 28.0 cm in front of a certain lens is imaged 8.10 cm in front of that lens (on the same side as the object). What type of lens is this and what is its focal length? Is the image real or wirtual? b) What if the image were located instead, 35.0 cm in $\int_{1}^{2} \int_{0}^{2} \int_{$ 23] a) How far from a 50.0-mm-focal-length lens must an object be placed if its image is to magnified 2.00x and be real?

(75 mm, 25mm)

(75 a) A 2.20 cm high insect is 1.20 m from a 135 mm-focal-length lens. Where is the image, how high is it, and what type is it? b) What if f = -135 mm? (152 mm, -.279 cm, real and inverted --- -121 mm, .222 cm, virtual and upright) $B = \frac{1}{1.2} = \frac{1}$ $\int_{-0.135}^{\infty} \int_{1.2}^{\infty} \int_{0}^{\infty} \int_{0}^{$ $\frac{1}{135} = \frac{1}{1.2} = \frac{1}{1.2} = \frac{6.57}{1.2} = \frac{1}{1.2} =$

		•
		•