Kinematics

These are the equations which describe motion．There are 4 variables in each kinematic equation，three you will be given in a problem，you need to find the fourth．
$\mathrm{d}<=$ stands for displacement／distance units of meters $t \mathrm{t}<=$ stands for time units of seconds
a $\mathrm{a}<=$ acceleration units of meters／second ${ }^{2}$

（uso the problem
（2）Write down the variables you have
（3）Match what you haul with for mulls

Stops： $\mathrm{v}_{\mathrm{f}}=0 \longleftarrow$
Rest：one of your velocities is zero TO REST ： $\mathrm{v}_{\mathrm{f}}=0$
AT REST ： $\mathrm{v}_{0}=0$
SOLVING KINEMATICS is about matching information with a formula

Kif run a toward a spear and stop after being skewered in 1.0 m
find the acceleration

$$
v_{0} \cdot 3 \frac{\pi}{5}
$$

\square

$$
V_{f}=0
$$

$$
d=100 \mathrm{~m}
$$

$$
\left(0^{2}\right)=3^{2}+2(a)!
$$

Watch out for directions．Suppose your problem gives you a direction like UP then anything going the other way is negative．

A cat is throw down with an initial velocity of $5.0 \mathrm{~m} / \mathrm{s}$ off a 30 m high bridge． With what speed
will it impact the ground？［Draw a picture］

$$
\left.V_{0}+5\right)
$$

$a=-6 c_{c} \delta \frac{m}{s^{2}}$
$V_{r}=丹 30 \mathrm{~m}$
$V_{f}=15$
But if the same cat 1 Then
$\mathrm{Vi}=5 \mathrm{~m} / \mathrm{s}$
$d=-30 \mathrm{~m}$＜＝negative because it finishes down 30 m
$\mathrm{a}=-9.8 \mathrm{~m} / \mathrm{s} 2$
$\mathrm{Vf}=$ ？

Same formula $\mathrm{Vf}^{2}=\mathrm{Vi}^{2}+2$ ad and you get the same answer because a and d are both negative so the negatives factor out！

A motorcycle travels at $25 \mathrm{~m} / \mathrm{s}$ east when it applies the brakes. If it stops after 1.2 s determine the acceleration of the bike.

$$
V_{0}=25 \frac{m}{s}
$$

$$
V_{f}=0
$$

$$
t=1.2 \mathrm{~s}
$$

$$
\begin{array}{ll}
t-1 . l & -2 \\
a=? & \frac{-2}{1}
\end{array}
$$

Practice:
Page 69-12-12
Page 72 13-16
Page 74-17-20
Page 75-21-24

Δt

