A powerful mathematical shortcut used when dividing by semothing squared AND nothing

Else changes in an equation.

Great examples are a mass like you, and the Earth:

480000000000

$$
60 \times 8 \times 10^{9}
$$

$$
48 \times 10^{\circ 0} \mathrm{~kg}
$$

5980000000000000000000000

$$
\begin{aligned}
& m_{\text {ryle }}=100 \mathrm{~kg} \\
& F_{g}=\frac{G m_{1} m_{2}}{\delta_{2}^{2}}=\frac{6.67 \times 10^{-11}(100) 5.98 \times 10^{24}}{\left(6.38 \times 10^{6}\right)^{2}}=\begin{array}{l}
1000 \\
979 \mathrm{~N} \\
979 \div 2^{2}=
\end{array}
\end{aligned}
$$

$$
=245 \mathrm{~N}
$$

Find Fy between moon $\left(m=7.35 \times 10^{22} \mathrm{~kg}\right)$ and
Earth if Earth-moon distance is $3.84 \times 10^{8} \mathrm{~m}$

$$
T_{g}=\frac{G m_{1} m_{2}}{d^{2}}
$$

$$
=\frac{6.67 \times 10^{-11}\left(5.98 \times 10^{24}\right) 7.35 \times 10^{22}}{\left(3 \times \frac{\left.3.84 \times 10^{8}\right)^{2}}{20} 0^{2}\right.}
$$

If the distance tripled $)$
What would the new $\left(3 k^{3.84} \times 10^{8}\right)^{2}$
$=1.99 \times 10^{20} \mathrm{~N} \div 3^{2}$ Fy be?

$$
=2.2 \times 10^{19} \mathrm{~N}
$$

Ned has Fe. en Ea th of 490 N
\checkmark
Ned has Fy on Earth of 490 N
if his dixie 57 times bigger, what
new $\mathrm{Fy}_{\text {will exist }}=\frac{49 \mathrm{~g}}{7^{2}}=10 \mathrm{~N}$

$$
F_{g}=\frac{6 \mathrm{~mm}}{(7)^{2}}=\frac{490}{7^{2}}
$$

A cat has $F_{g}=50 \mathrm{~N}+$ Earth' surface
if we move the cat th half the distance. What would be the next ty?

$$
50 \div\left(\frac{1}{2}\right)^{2}=200 \mathrm{~N}
$$

A satellite has $F_{g}=500 \mathrm{~N}$ at a distance from the sun, it the distance 2.5 tine larger what would be the Fg ?

$$
\frac{500}{25^{2}}=80 \mathrm{~N}
$$

Gravitational field (g) is the bending of space caused by mass

Gravitational field at the "surface" of Jupiter is about $26 \mathrm{~N} / \mathrm{kg}$. What would be the gravitational field at 3 times that distance from the center?

$$
\frac{26}{2^{2}}=2.89 \frac{\mathrm{~N}}{\mathrm{~kg}}
$$

Mars has gravitational field of $3.43 \mathrm{~N} / \mathrm{kg}$ how far in radii would you have to go to feel a gravitational field of $0.214 \mathrm{~N} / \mathrm{kg}$?

$$
\frac{3.43}{=77} i^{214} \frac{3.43}{-11}=?^{2}
$$

$$
\begin{array}{ll}
\frac{3.43}{?^{2}}=2.214 & \frac{3.43}{.214}=?^{2} \\
\text { L FORCES } & \sqrt{16}=?^{2}
\end{array}
$$

Multi-body problems
(1) DRAW ALL FORCES
(2) Frat = Winners - LOSERS
(3) $\frac{E_{01}}{m}=a \quad$ add all the mosses

Find the acceleration of the masses below: \leftarrow © change force directions

$$
\begin{aligned}
F_{n e t} & =W-L \\
& =19.6-9.8 \\
m=2 \mathrm{~kg} & =9.8
\end{aligned}
$$

$$
\begin{aligned}
& F_{g}=m g \\
&=19.6
\end{aligned}
$$

$$
\frac{F_{n c t}}{m}=\frac{9.8}{7}
$$

$$
\begin{array}{rl}
-n=4 & a=\frac{-n t}{m} \quad 4=\frac{49}{\left(5+m_{1}\right.} \\
5+m & =49 \\
5 & =12.25=\frac{1}{1}+m_{1}
\end{array}
$$

$$
=1.4 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

$$
5+m=\frac{49}{4}=\frac{12.25}{-5}=\frac{1}{7.25} \mathrm{~kg}=m_{1} .
$$

