Force = any push or pull
Force is an interaction between bosons and the fermions affected by each.

The Standard Model: Everything is made of particles 3 categories:

$E=m c^{2}$
Hadrons: (protons and neutrons) these are held together by the strong nuclear force
Leptons: (electrons and electron like stuff, neutrinos) held in place by electromagnetic force $9 \times 10^{16^{-}}$
Gone 0 on d
BOSONS: force carriers, these interact with Hadrons and Leptons giving the 4 fundarnental forced s 5 h
The forces are: Strong Nuclear For ce, ElectroMagnetic Force, Weak Nuclear Force, Gravitational Force
Forces only exist between matter when bosons communicate information. Contact forces: all a generalization of EM force, involve exchange of PHOTON

MASS: 2 types of mass, $\underbrace{\text { inertial mass, gravitational mass }}_{\text {rosistand }}$

MASS: 2 types of mass, $\frac{\underbrace{\text { rosistand }}_{\text {inertial mass, }} \text { gravitational mass }}{\text { mass }}$

Total
ford

A force is any push or pull. Forces are measured in units of NEWTONS. (N) Force of gravity (Hg) [near Earth' surface]
$F_{g}=m g \quad m$ is mass of object in kg, g acceleration due to gravity $\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

Normal Force (F_{n})

Supporting force exerted by a surface AT 90° to the surface which holds a mass in place
$\mathrm{F}_{\mathrm{n}}=\mathrm{F}_{\mathrm{g}} \cos \theta$ where θ is the angle of the surface

$$
f_{t}=k x
$$

A 3.0 kg cat is placed on a stove burner which is red hot and inclined at 30°. What normal force is exerted on the cat by the burner?

$$
.15+(642)=.57 m
$$

Force of Friction (F_{f})

This is the force which resists motion due to the grinding together of molecules.
$\mathrm{F}_{\mathrm{f}}=\mu \mathrm{F}_{\mathrm{n}}$

Force of Friction (F_{f})

This is the force which resists motion due to the grinding together of molecules.
$\mathrm{F}_{\mathrm{f}}=\mu \mathrm{F}_{\mathrm{n}}$
μ is called the coefficient of friction <= is a value which describes how sticky 2 surfaces are A cat of mass 5.0 kg is on a ramp of inclination 30° with coefficient of friction 1.5 find Ff

Dry roads have $\mu=0.60$, how many times more force of friction is on a dry road than a wet road, you riffraff!? :-)

Elastic Force (F_{e})
This is the force which acts to restore the shape of a deformed object $\mathrm{F}_{\mathrm{e}}=\mathrm{kx}$

$$
r_{e}=h_{\uparrow}
$$

k spring constant (N / m) and high values (10000's) show a really stiff object low values (10 's) show really stretchy objects.
X is the distance you stretch or compress the object in METERS.
Elastic limit <= the point when an object displays plastic behaviour <= stretches but doesn't bounce back Brittle behaviour <= occurs after plastic behaviour when the object fails (breaks)

A rubber band of length 0.15 m and spring constant $12 \mathrm{~N} / \mathrm{m}$ experiences a force of 5.0 N . What is
a) The amount it stretches
b) The new length

$\left(1.74 \times 10^{7}\right)^{2}$
The Force of Gravity Between ANY 2 masses:

Kg = mg <= works for finding the force of gravity between 1 mass and Earth near Earth's surface
We cannot use this if: 1) the force of gravity does not involve the Earth
2) were not near* the Earth's surface
*near $=10$ km or less

If the Fg is between 2 masses and one is NOT the Earth or you're far from Earth we use
NEWTON'S LAW OF UNIVERSAL GRAVITATION

$$
\begin{array}{cl}
\mathrm{Fg}=\frac{G m_{1} m_{2}}{\mathrm{~d}^{2}}-\quad G=\text { universal gravitational constant }=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2} \\
m_{\mathrm{e}}=\text { mass of Earth }=5.98 \times 10^{24} \mathrm{~kg}
\end{array}
$$

```
d = distance between the CENTRES of the masses (for a planet use its radius)
re}=\mathrm{ radius of the Earth 6.38 × 10 6 m
```

Calculate the force of gravity on you (68 kg) on the moon, where $r_{m}=1.74 \times 10^{6} \mathrm{~m}$, and $\mathrm{m}_{\mathrm{m}}=7.35 \times 10^{22} \mathrm{~kg}$.

$$
m_{1} m_{2}
$$

Calculate the force of gravity between Strachan (80 kg) and his coffee cup 1.0 kg if the centers are separated by
1.2 m

