Newton's Laws

Isaac Newton lived in the 1600's and developed three laws based on forces and how they cause objects to behave. Each law deals with Forces and acceleration and they are called Newton's First, Second and Third Laws. move for u in one direction

NEWTON'S SECOND LAW:

An object will accelerate in the direction of an unbalanced force. The size of the acceleration is proportioned to the size of the unbalanced force. The size of the acceleration is INVERSELY proportioned to the mass of the object.

Practice Problems:

1. An 11.0 kg object is thrown vertically into the air with an applied force of 145 N . What is the initial acceleration of the object?

$\left(3.37 \mathrm{~m} / \mathrm{s}^{2}\right)$
2. A 12.0 kg object is pushed with a horizontal force of 6.0 N east across a horizontal table. If the force of friction between the two surfaces is 2.0 N , what is the acceleration of the object?

3. \quad A 20.0 kg object is pulled horizontally along a level floor with an applied force of $27.0 . \mathrm{N}$. If this object is accelerating at a rate of $0.80 \mathrm{~m} / \mathrm{s}^{2}$, what

4.

- Anobject is pulled west along a horizontal frictionless surface with a steady horizontal fores-of 12.0 N . If the object accelerates from rest $)$ a velocity of $4.0 \mathrm{~m} / \mathrm{s}$ while moving 5.0 m , - What is the mass of the object?

Fret= $6+-2 \quad$ Fat $=a=$

$$
=4 \mathrm{~N}
$$

$$
\text { (} 0.33 \mathrm{~m} / \mathrm{s}^{2} \text { east) }
$$

3. A 15.0 kg object is thrown vertically into the air. If the initial acceleration of the object is $8.80 \mathrm{~m} / \mathrm{s}^{2}$, what is the applied force?

. A 6.3 kg object is thrown upward with an acceleration or 0.45$) \mathrm{m} / \mathrm{s}^{2}$. What is the

$m=6.3 \mathrm{~kg}$
Fret
$\begin{aligned} \quad F_{g} & =m g \quad+81.8= \\ & =6.3(9.8)=61.7 \mathrm{~N}\end{aligned}$

$=6.3(9.8)=61.7 \mathrm{~N} \quad{ }^{(55 \mathrm{~N})} \quad F_{\text {app }}=64.6 \mathrm{~N}$

4. A horizontal force of 90.0 N is required to push a 75.0 kg object along a horizontal surface at a constant speed. What is the magnitude of the

$$
13020=
$$

$$
1.3 \times 10^{4} \mathrm{~N}_{y\left(1.31 \times 10^{4} \mathrm{~N}\right)}
$$

$$
F_{T}=11760 \mathrm{~N}
$$

$$
\begin{aligned}
& \frac{100}{9.8}=m(5) \quad F_{n e}+=W-L \quad-\quad=250-140=110 \mathrm{~N}
\end{aligned}
$$

$$
\ln .21=m
$$

$$
\text { Lot }-110=11{ }^{1 / 2} s^{2} \text { North }
$$

.075 a

$$
F_{\text {net }}=F f=2500 N=20.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}=a}=0.20 .81 .5 \mathrm{~m}
$$

12. An 7.0 kg object rests on a horizontal frictionless surface. What is the magnitude of the horizontal force that is required to accelerate it at the rate of $2.3 \mathrm{~m} / \mathrm{s}^{2}$?

$$
\begin{array}{cc}
9.8 & -=250-140=110 \mathrm{~N} \\
10.2 \mathrm{~kg} & \frac{f_{2} t}{m}=a=\frac{110}{10.2}=11 \frac{1 / 2}{s^{2}} \text { North } \\
\left(1.1 \times 10^{1} \mathrm{~m} / \mathrm{s}^{2} \text { north }\right)
\end{array}
$$

stppating Proc Mantel
A 1.0 kg box on a horizontal friction less surface y Surface 0 is accelerated by attaching a 1.5 kg mass as
shown in the diagram. What is the deceleration at 900 of the box?

$$
d=2 \psi_{0}
$$

 surface with a force of 60.0 N acting at an angl of 42.0° as shown in the diagram. If the force । friction on the box is 15.0 N , what is the acceleration?

$$
=19.6-14.7=4.9 \mathrm{~N}
$$

$$
\begin{aligned}
& \frac{1 \mathrm{nt}}{\mathrm{~m}}=\frac{4.9}{3.5}=1.4 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
& -1.4 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
\end{aligned}
$$

$$
\left.r_{g}=m q \quad 725=74\right)_{q}
$$

$$
\begin{aligned}
& F_{\text {atm }}=\omega-L \text {. } \\
& =44.6-15: 29.6 \mathrm{~N} \\
& \text { F等: }: \frac{29.6}{12.8}=2.31 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& V_{g}=m g \frac{725}{9.9}(-44) g 2 x=m \\
& \text { b) the } 2.0 \mathrm{~kg} \text { mass? } \\
& 1.4 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \text { down } \\
& \mu=0.4 \downarrow F=\sigma_{g}=49 \mathrm{~N} \\
& \begin{aligned}
F_{\text {set }} & =W-L \\
& =50-19.6
\end{aligned} \quad-. g \\
& \frac{F_{n t}}{m}=\frac{30.4}{5}=6.08 \frac{m}{s^{2}}=30.4 \\
& \text { Right }
\end{aligned}
$$

