

A 3.0 kg cat is placed on a stove burner which is red hot. What normal force is exerted on the cat by the burner if the burner is inclined at 30° ?

direction of motion tells you /
Force of Friction (F_{f}) $\downarrow \mathrm{b}$ whir h way l F_{f} is.
This is force which resists motion due to the grinding together of molecules.
$F_{f}=\mu F_{n}$

Forces Page 1

Dry roads have $\mu=0.60$, how many times more force of friction is on a dry road than a wet road?

$$
=5880 \mathrm{~N}
$$

$$
\begin{aligned}
& \mu=.6(3) \mu \mathrm{g}, 2 \\
& \text { oil force } \times 3=5880 \mathrm{~N}
\end{aligned}
$$

Elastic Force (Fe)
This is the force which acts to restore the shape of a deformed object

+ $\mathrm{Fe}=\mathrm{kx}$
$\Rightarrow k$ spring constant (N / m) and high values (1000's) show a really stiff object,
low values (10's) show really stretchy objects.
$\rightarrow \mathrm{X}$ is the distance you stretch or compress the object in METERS.

A cat has $\mathrm{k}=12 \mathrm{~N} / \mathrm{m}$ and is 45 cm long. You stretch the cat to 50 cm ,
\qquad
Elastic behaviour is when you apply a force to deform object, remove F and it bounces back

$$
\text { . . } 0
$$

Elastic limit <= the point when an object displays plastic behaviour <= stretches but doesn't bounce back

A rubber band of length 15 cm and spring constant $12 \mathrm{~N} / \mathrm{m}$ experiences a force of 0.05 N . What is
a) The amount it stretches
b) The new length
\Rightarrow The Force of Gravity Between ANY 2 masses:
$\mathrm{Fg}=\mathrm{mg}<=$ works for finding the force of gravity between 1 mass and Earth near Earth's surface
We cannot use this if: 1) the force of gravity does not involve the Earth
2) were not near* the Earth's surface
*near $=10 \mathrm{~km}$ or less 0.000000

NEWTON'S LAW OF UNIVERSAL GRAVITATION $F g=\underline{G_{1}} \underline{m_{2}} \underline{-} \quad G=$ universal gravitational constant $=6.67 \times 10^{\boxed{11}} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}$
 distance between centres

$$
\begin{aligned}
& 15 \mathrm{um} \rightarrow .15 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& \text { how much force did you use? } \\
& x=50-45=5 \mathrm{~cm} \rightarrow \text { change to }
\end{aligned}
$$

m

NEWTON'S LAW OF UNIVERSAL GRAVITATION
$\mathrm{Fg}=\frac{G \mathrm{~m}_{1} \underline{m}_{2}}{\mathrm{~d}^{2}}-$
$\mathrm{G}=$ universal gravitational constant $=6.67 \times 10^{\infty 11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}$
$\mathrm{m}_{1}=1 \mathrm{st}$ mass in kg $m_{2}=2$ nd mass in kg $d=$ distance between the CENTRES of the masses (for a planet use the radius of the planet)

$$
r_{e}=6.38 \times 10^{6} \mathrm{~m}
$$

$$
\mathrm{m}_{\mathrm{e}}=\text { mass of Earth }=5.98 \times 10^{24} \mathrm{~kg}
$$

789
456

Calculate the force of gravity on a random physic kid (65 kg) on the moon, where $r_{m}=1.74 \times 10^{6} \mathrm{~m}, \mathrm{~m}_{\mathrm{m}}=7.35 \times 10^{22} \mathrm{~kg}$.

Find Fret by adding the forces (look at their directions)

$$
f_{f}=4.0 \mathrm{~N} \text {.. } F_{\text {poll }}=10 \mathrm{~N}
$$

$$
\begin{aligned}
& f_{f}=4.0 \mathrm{~N}, \quad F_{\text {poll }}=10 \mathrm{~N} \\
& \rightarrow \\
& \text { Fast }=6.0 \xrightarrow{10}
\end{aligned}
$$

Newton's $1^{5 T}$ Law: If there is no Fret (Fat=0) then the object stays at constant speed.
Newton's $2^{\text {nd }}$ Law: For ar object to accelerate there must be a Fret not zero

A cat is pulled by 3 forces 10 N [E] 14 N [S], and 24 N [W]. The cat has an acceleration of $2.25 \mathrm{~m} / \mathrm{s}^{2}$ find its mass.

