

There are many types of energy. The ones we do this year are:

There are 2 main categories of energy
$E p(P E)$ potential energy - stored, able to change some property in the universe later
Ep in springs: $E_{p}=\frac{1}{2} K X^{2} \underset{\sim}{\rightleftarrows} k$: spring constant $(\mathrm{N} / \mathrm{m})$
Gravitational Ep: $E_{p}=m g h \underset{\leftarrow}{\leftarrow} m=\operatorname{mass}(\mathrm{kg})$ to compress (m) $\leftarrow g=a c c l l$
$\kappa=$ height to gravity $9.8 \frac{\mathrm{~m}}{2}$
Energy stored as m $E=1 m c^{2} \leftarrow C=$ speed of light point $3.00 \times 10^{8} \mathrm{~m}$)
te change in mass in nuclear reaction $3.00 \times 10^{8} \mathrm{~m}$

Kinetic Energy Eke (KE): energy forms in use right now
Energy of a moving mass: $E_{k}=\frac{1}{2} m v^{2} \quad V \in v e l o c i t y\left(\frac{m}{5}\right)$
Heat or thermal energy: $E_{H} \leftarrow$ moving molecules
Electrical Energy:

$$
\begin{aligned}
& E_{l}=W+
\end{aligned}
$$

$$
\frac{1}{T} \leftarrow \cos +\operatorname{cont}(A)
$$

$$
t \leftarrow t \operatorname{tin} e(s)
$$

Energetic Examples:

1) A cat of mass 5.0 kg is moving at $4.0 \mathrm{~m} / \mathrm{s}$ what is its kinetic energy ?
2) A spring with constant $120 \mathrm{~N} / \mathrm{m}$ is s. trenched fro 2 cm to $12 \mathrm{~cm} \Delta x=12-2$ what is its elastic energy?
$\xrightarrow{\text { is its el }}$

3) A cat on fire has mass 8.0 kg and is on the edge of a cliff that is 16 m above the ground. If there is a safety net 10 m above the ground what is the cat's potential energy (a) measured from the net

4)

angl

K.atic Energy

1-3
hints: use f_{g} to find m
use kinematics to find v

Potential energy
$1,3,5$
hint: its all abut the height

Kinatictiorgy
Buck of P.I

The Work/energy Theorem
When work is done it results in a change in the energy of an object.

$$
\mathrm{W}=\Delta \mathrm{E}
$$

$$
5-7 \rho^{224}
$$

This could be a change in Ep or Ak or Ep + Ak!

A cat of mass 3.0 kg is lifted 2.0 m how much work was done on the cat?

$$
W=\Delta E_{p}
$$

$$
=E_{p f}
$$

An engine of a $F 350$ of mass 1200 kg , provides acceleration of $4.0 \mathrm{~m} / \mathrm{s}^{2}$. If the truck was moving at $12 \mathrm{~m} / \mathrm{s}$ and ends at $17 \mathrm{~m} / \mathrm{s}$, what work was done?

$$
\begin{aligned}
& W=\frac{F}{\pi} \cdot \frac{d}{R} \\
& C=\operatorname{man} a \quad V_{f}^{2}=V_{0}^{l}+l a d
\end{aligned}
$$

$$
1 n^{2}-n^{2}=d=18 \mathrm{~m}
$$

An airplane at rest on the runway takes off and reaches a height of 500 m with velocity of $50 \mathrm{~m} / \mathrm{s}$. If its mass is 800 kg what work was done?

$$
\begin{aligned}
& \text { * } W=\Delta E_{p}+\Delta E_{k} \\
& W=E_{p^{\prime}}+E_{p_{0}}+E_{l_{f}}-E_{k_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& =800(9.8)(500)+\frac{1}{2} 800(50)^{2} \\
& =4.92 \times 10^{6} 5
\end{aligned}
$$

A bunny of mass 500 g is graphed as shown below. If it started at rest What is its final velocity?

The Work/Energy Theorem:

When work is done on or by an object energy changes. Work $=\Delta E$
Example 1: a spring with constant 25 Nm is stretched from 15 to 20 cm , what Work was done on the spring:

$$
\left.W=\frac{1}{2}(25) \cos \right)^{2}
$$

$$
=0.031 \mathrm{~J}
$$

$3.0 \mathrm{~m} / \mathrm{s}$, what is
Its final velocity:

$$
W=\Delta E_{k}^{\circ}
$$

The Law of Conservation of Energy: total before = total after assume Zero

$$
E_{p_{0}}+E_{k_{0}}=E_{p f}+E_{k_{f}}+E_{4} \text { other wise }
$$

Examples: A cat of mass 5.0 kg is dropped from height 6.0 m and strikes the Earth. With what speed does it impact:

A cat is throwndown/up at $4.0 \mathrm{~m} / \mathrm{s}$ from height 3.0 m above a desk. The 5.0 kg cat hits the desk, what speed had it at impact?

A cat named Blake the Flake is thrown up from the ground with an initial velocity of $16 \mathrm{~m} / \mathrm{s}$ if Blake's mass is 15 kg what velocity will non-binary Blake have at height 4.0 m ?

(0)
hA spring with constant $4000 \mathrm{~N} / \mathrm{m}$ is compressed $0,03 \mathrm{~m}$, it is used to fire a 3.0 kg cat what velocity will the cat have?

pow

$$
\begin{aligned}
& E_{p_{0}}+E k_{-}=V_{f}+E k_{f}+E V_{f}+v_{f}^{2} \\
& \text { gravitational field: }
\end{aligned}
$$

Ep in a gravitational field:

