

Position is your location at any moment:

Displacement is separation from a starting place after moving WITH A DIRECTION, measured in meters $(m) T$ vector \triangle Os.tion $\leq f_{\text {final }}$ - initial
Variable in equations is d

$$
=-2-2=-4
$$

Distance is similar but different, distance is total number of meters travelled from a starting point, measured in meters (m)Scalar \leftarrow no direction $\leftarrow \pm \operatorname{aren}^{\prime}+\mathrm{mze}$) Variable in equations is d

Velocity is the rate of change of displacement

Speed is rate of change of distance $V=\Delta d$
scalar

Example:

A cat travels from the 1.0 meter mark as shown below to the 5.0 m mark then to the
3.0 m mark find the position, distance travelled and the displacement of the cat at the rd.

Time is a measurement of change in the universe. Most physicalyon@ Pes Change as time passes. Time is a dimension in space like left/right, up/down, in/dut. Time is measured in seconds (s).
Variate ines equtationsoisy time
Determine how man\%econds there are in a 1.25 hour long physics class.
Unit conversion \rightarrow by mulfidyiny
Velocityisa speed WIPH A DIRECTION, measured in maters per second (mas) 45005
Variable in equations is V

slope at ${ }^{\text {man }}$ Rate ac k
$\phi(m)$
On a. d vs
araohalano = volacit.

$$
\begin{array}{cc}
\text { Eadcchnamed } Z_{i p} \text {, and } z_{i p} \text { was } & \text { displacement } \\
\text { faster } \\
\text { foster } & \text { time } \\
\text { acceleration } &
\end{array}
$$

Speed is the rate of change of distance, measured in m / s

Variable in equations v

A cat is dragged by a car 16.0 m [E$]$ in 4.0 s find the speed and velocity of the cat.
$\Delta d / \Delta t=$ speed or velocity

$$
\begin{aligned}
=\frac{2}{16}=4.0 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \begin{aligned}
\frac{\Delta d}{\Delta t} & =\text { velocity } \\
45 & =16 \mathrm{~m}[E] \\
& =\frac{45}{4} \mathrm{~m}[E]
\end{aligned}
\end{aligned}
$$

$$
50 \frac{m}{s}[E]
$$

$5 w$
A cat is kicked from $1.0 \mathrm{~m}[\mathrm{E}]$ to 5.0 m [E] then pitch-forked to 3.0 m [E] all in 4.0 seconds, find the speed and velocity.

$$
\Delta d_{i+m u} \longrightarrow \frac{6 m}{4 \mathrm{~s}}=1.5 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$$
V=1 \partial_{a n} 4 m-1 m
$$

On a distance vs. time graph the slope $=$ speed On a displacement vs. time graph the slope = velocity

$$
\begin{array}{r}
\text { icy } V_{C D}=(\overline{O-4)} \\
\text { m } \\
\text { di. Red dime }=-4.0-1.5) \mathrm{m} \\
\\
4.0 \mathrm{~m} \text { left }
\end{array}
$$

A linear graph of d vs. t will show a constant velocity

$\frac{\text { Wsappeity is changing }}{\hat{\uparrow}}$-increasingly
on dus.t slope \leftarrow speseditive velocity
$d(n)$ accelerating for ward

you com estimate the velocity on a curving d ss t graph You are assad for velocity at axadly iss
(1) make pt at the given the (1) Make pt at the given thine
(2) Draw a tangent instal) (find slope of tangent but does not velocity
+
0 ts)

