Remember the slope of a distance vs. time graph is speed, slope of displacement vs. time is velocity.
Which runner on the graphs below is faster, 恶 or B, how can you tell?

$$
\begin{aligned}
& a=\text { steeper } \\
& \text { slope }
\end{aligned}
$$

Acceleration is the increase in magnitude (size) of velocity) sketch what a displacement Vs. time graph will look like for an object starting with zero velocity, and accelerating Forward. \qquad
Objects which are ACCELERATING will have lines getting steeper and steeper op d vs t graphs 9 ?ike above:
steeper
curre
draw a d vs t \&raph for an object starting at rest accelerating backward
draw a d vs t \$raph for andobject starting at rest accelerating backward

Objects which are DECELERATING have curves which become less and less steep, on d vs t graphs, like below:

$\Delta \overline{\Delta t} \overline{5.2-3.5}=1.7=35.3 \frac{n}{5}$

$$
\frac{1!}{5}!6 t(s)
$$

(s)

INSTANTANEOUS VELOCITY
It means the velocity at a specific instant for an object which is accelerating or decelerating.

$$
\begin{aligned}
& \text { You need a straight line on your graph, BUT your graph is a curve. } \\
& \left.L_{m}\right)
\end{aligned}
$$

$$
4.05
$$

- Place dot at that Time
- estimate a best line at that time touch but not cross the curve
- find slope of the tamgmt $\frac{\partial \partial}{\Delta t}=\frac{25.5-0}{3.5-2}$

$$
\begin{gathered}
\Delta t 3.5-4 \\
=25.5 \\
1.5
\end{gathered}
$$

When looking for a $\begin{aligned} & (s) \\ & \text { velocity AT AN EXACT TIME }\end{aligned}$
slope of

$$
\frac{10.5}{2.5}=4.2 \frac{\mathrm{~m}}{5}
$$

Pasted from <file:///D:|My\%20Documents|My\%20Files|strachan\physics\%2011|Graphical\%20Analysis\graphing\%20\%20practice\%20sheet.doc>
head

$\mathrm{Km}=1,30 \mathrm{~m}$

$$
\frac{45-0}{18-0}=\frac{45}{18}=2.5 \frac{\mathrm{~m}}{5}
$$

Acceleration is the rate of change of velocity \leftarrow this means acceleration is $\Delta v / \Delta t$ or
$a=\underline{\Delta v}$ the units of acceleration are the units of velocity $=\underline{m}$
$\pi=\frac{\underline{\Delta t}}{}$

$$
\text { Slope of a } V \text { vs. } .^{-l} \text { graph= accel }
$$

This formula is often written as $A A t=v_{f}=v_{0}$ where v_{f} is final velocity and v_{o} is
(initial velocity or
$* a t=v_{f}-v_{o}$
The equation $\Delta d_{5}=v_{\text {average }}$ can be written as $\Delta d=v_{\text {average }} \Delta t$ or
${ }^{*} \mathrm{at}=\mathrm{v}_{\mathrm{f}}-\mathrm{v}_{\mathrm{o}}$
The equation $\Delta d=v_{\text {average }}$ can be written as $\Delta d=v_{\text {average }} \Delta t$ or

- $\quad \underline{\Delta} t$
$*_{d}=1 / 2\left(v_{f}+v_{o}\right) t$
Negative slopes
On a D vs T graph a negative slope means the object is moving backward
On a V vs T graph a negative slope means the object is either decelerating or accelerating backward

Each of the equations with the * are called kinematic equations because they are used to find and describe motion, there are two other kinematic equations

```
* \(\mathrm{d}=\mathrm{v}_{\mathrm{o}} \mathrm{t}+\sqrt{1 / \mathrm{at}^{2}}\)
And
\(*_{v_{f}}{ }^{2}=v_{0}{ }^{2}+2 \mathrm{ad}\)
```

Anyone of these equations may be used depending on what variables are given in a problem.
Some special words give us information about a problem these are:
REST: this tells us either the vf or vo, when something is at rest it is not moving, if an object starts at rest then vo $=0 \mathrm{~m} / \mathrm{s}$ if it ends at rest then $\mathrm{vf}=0 \mathrm{~m} / \mathrm{s}$

DROP: when an object drops it starts at rest vo $=0 \mathrm{~m} / \mathrm{s}$ and falls due to the acceleration due to gravity which on earth is $9.8 \mathrm{~m} / \mathrm{s}^{2}$ for all objects.

FALL: as dropped
THROWN DOWN: starts with vo > $0 \mathrm{~m} / \mathrm{s}$ and accelerates due to gravity a $=9.8 \mathrm{~m} / \mathrm{s}^{2}$
THROWN UP: starts with vo $>0 \mathrm{~m} / \mathrm{s}$ and DECELERATES due to gravity a $=-9.8$ $\mathrm{m} / \mathrm{s}^{2}$
1-14 sheets
Examples:
A cat is dropped from a 100 m high tower, what speed does it have when it hits the ground?
When looking for information the key words are dropped and 100 m :
vo $=0 \mathrm{~m} / \mathrm{s}$ (dropped)
$\mathrm{a}=9.8 \mathrm{~m} / \mathrm{s} 2$ (dropped)
$\mathrm{d}=100 \mathrm{~m}$
Unknown is vf (speed at ground)
Formula with these four variables is $\mathrm{v}_{\mathrm{f}}{ }^{2}=\mathrm{v}_{\mathrm{o}}{ }^{2}+2 \mathrm{ad}$
Substitute:
$\mathrm{Vf}^{2}=0^{2}+2$ (9.8)(100)
$V f^{2}=1960$
$\mathrm{Vf}=44.3 \mathrm{~m} / \mathrm{s}$
A car starts at rest and travels 50 m in 20 seconds, find its acceleration.
Vo $=0 \mathrm{~m} / \mathrm{s}$ (starts at rest)
$\mathrm{D}=50 \mathrm{~m}$
$\mathrm{T}=20 \mathrm{~s}$
$\mathrm{A}=$ unknowns
Formula with these variables is $d=v_{o} t+1 / 2 a^{2}$
Substitute
$50=0(20)+1 / 2 \mathrm{a}(20)^{2}$
$50=0+200 \mathrm{a}$
$50=200 \mathrm{a}$
$50 / 200=\mathrm{a}=0.25 \mathrm{~m} / \mathrm{s}^{2}$

Do 1-14 on sheets for homework
Pasted from <file:///D:|My\%20Documents|Desktop|kinematic\%20notes.doc>

